# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ НАБЕРЕЖНОЧЕЛНИНСКИЙ ИНСТИТУТ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО АВТОНОМНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра «Технологии строительства и управления недвижимостью»

### Учебно-методическое пособие по практическим занятием

по дисциплине «Строительные машины» для слушателей курсов дополнительного образования по направлению подготовки «Промышленное и гражданское строительство».

> Набережные Челны 2019

пособие ПО Учебно-методическое практическим занятием дисциплине «Строительные машины» ДЛЯ слушателей дополнительного образования направлению ПО подготовки «Промышленное гражданское строительство». И Составили Новоселов О.Г. г. Набережные Челны: НЧИ КФУ, 2019.

За основу методического указания были использован материал из пособия «Козориз С.Е. Методические указания к практическим работам по дисциплине Строительные машины и обрудование для студентов специальности 050729 «Строительство» для очной формы обучения 2010 г. − 81 с.» и нормативные отраслевые документы (СП, ГОСТ, ВСН) на основании редакции Федерального закона от 18 декабря 2006 года № 230-ФЗ (Свободное использование произведений).

Учебно-методическое пособие составлено в соответствии с Государственным образовательным стандартом высшего образования по направлению 08.03.01 «Строительство»

Печатается по решению заседания кафедры «Технологии строительства и управления недвижимостью» Казанского (Приволжского) федерального университета.

#### ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1 ТЕМА: ТЯГОВЫЙ РАСЧЕТ АВТОМОБИЛЬНОГО ТРАНСПОРТА

**Цель** занятия: Произвести тяговый расчет автомобильного транспорта при транспортировке грузов, определить производительность и сменный пробег автомобиля.

#### ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ

- 1. Определить возможную силу тяги автосамосвала по условию сцепления с дорогой на каждом участке.
- 2. Определить скорость движения груженного и порожнего автомобиля на каждом участке пути.
- 3. Определить продолжительность движения автомобиля на каждом участке пути в оба конца.
- 4. Подсчитать время загрузки автомобиля.
- 5. Подсчитать длительность рейса автомобиля, учитывая время на разгрузку и загрузку.
- 6. Определить сменную производительность и сменный пробег машины.

Данные для расчета приведены в табл. 2.1 - 2.3.

#### МЕТОДИКА РАСЧЕТА

1. Считая постоянной скорость движения определяем возможную силу тяги автомобиля по условию сцепления с дорогой на каждом участке пути (рис. 2.1) по формуле:

$$F_{\text{KD}} = \varphi_{\text{K}} G_{\text{CII}}, \text{H}, \tag{2.1}$$

где  $\phi_{\kappa}$  – коэффициент сцепления шин с дорогой на  $\kappa$  - том участке пути (табл. 2.3).  $G_{\text{сц}}$  – сила сцепления веса автомобиля, H (табл. 2.2).

Должно выполняться условие

$$F_{\kappa} \ge G_{\gamma}(f_{\kappa} + i_{\kappa}), \text{ H}, \tag{2.2}$$

где  $G_9$  — сила веса груженного автомобиля, эксплуатационная, Н (табл.2.2).  $f_{\kappa}$  — удельное сопротивление движению на  $\kappa$  - том участке пути (табл. 2.3).  $i_{\kappa}$  - уклон  $\kappa$  — того участка пути (табл. 2.1).

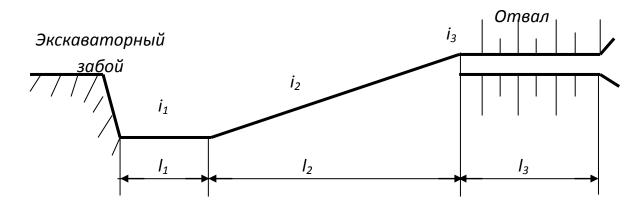



Рисунок 2.1 - Схема трассы движения автомобиля

2. Рассчитываем динамический фактор груженного Д и порожнего  $Д_0$  автомобиля для каждого участка по формулам

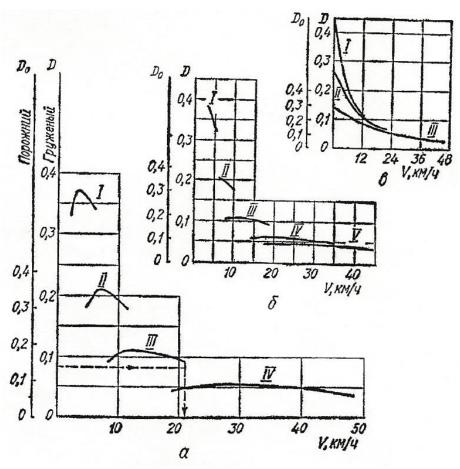
$$\mathcal{A} = f + i, 
\mathcal{A}_0 = f - i.$$
(2.3)

Пользуясь значениями динамического фактора выбираем по динамической характеристике (рис. 2.2) скорость движения груженного и порожнего автомобиля. При определении скорости порожнего автомобиля пользуемся шкалой:  $Д_0$ -V, груженного автомобиля шкалой J-V.

В случае отрицательного значения динамического фактора рассчитываем скорость движения на участке по формуле (2.4), задаваясь величиной  $S_{\rm T}$  тормозного пути. Для условий строительной площадки можно принимать  $S_{\rm T}$  =5 м.

$$\upsilon = \sqrt{9.97S_{T}(\varphi - i + f)}, \text{m/c}$$
(2.4)

3. Определяем продолжительность движения на каждом участке трассы


$$t_{1} = \frac{l_{1}}{0.9} \left( \frac{1}{\nu_{1}^{\text{rp}}} + \frac{1}{\nu_{1}^{\text{nop}}} \right), c \qquad t_{2} = \frac{l_{2}}{0.9} \left( \frac{1}{\nu_{2}^{\text{rp}}} + \frac{1}{\nu_{2}^{\text{nop}}} \right), c \qquad t_{3} = \frac{l_{3}}{0.9} \left( \frac{1}{\nu_{3}^{\text{rp}}} + \frac{1}{\nu_{3}^{\text{nop}}} \right), c, \qquad (2.5)$$

где  $l_1, l_2, l_3$  – длины участков трассы, м (табл. 2.1);

 $\upsilon_1^{\rm rp},\upsilon_2^{\rm rp},\upsilon_3^{\rm rp}$  - скорости движения груженого автомобиля на каждом участке пути, м/с;

 $v_1^{\text{пор}}, v_2^{\text{пор}}, v_3^{\text{пор}}$  - скорости движения порожнего автомобиля на тех же участках, м/с;

0.9 – коэффициент, учитывающий затраты времени на ускорение и замедление движения.



## $a-{ m MA3-503A};~\delta-{ m Kpa3-256B};~ в-{ m БелА3-540}$ Рисунок 2.2 - Динамические характеристики автосамосвалов

Вычисляем продолжительность загрузки автомобиля

$$t_{3ATP} = t_{II} n, c, \tag{2.6}$$

где  $t_{\text{II}}$  – рабочий цикл экскаватора, с (табл. 2.2);

n – количество ковшей вмещающихся в кузов автомобиля, (табл. 2.2).

Необходимо проверить условие грузоподъемности автомобиля

$$Q_{\Gamma P} \ge V_{KOB} n \rho = Q, \, \kappa \Gamma \tag{2.7}$$

где  $Q_{\rm rp}$  – грузоподъемность автомобиля, кг (табл. 2.2);

 $V_{\text{ков}}$  – емкость ковша экскаватора, м<sup>3</sup> (табл. 2.2);

 $\rho$  - насыпная плотность грунта, кг/м<sup>3</sup> (табл. 1.5);

Q – масса груза, кг.

Если условие (2.7) не выполняется, необходимо уменьшить количество ковшей грунта, засыпаемых в кузов автомобиля и уточнить время загрузки.

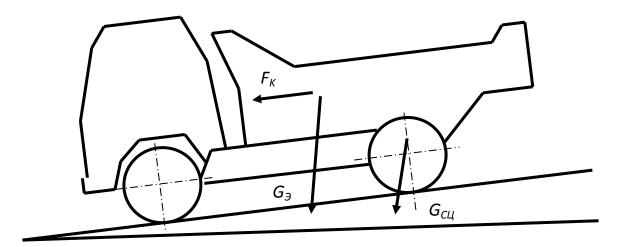



Рисунок 2.3 - Схема сил, действующих на автомобиль

4. Подсчитываем длительность рейса автомобиля, учитывая время на загрузку и разгрузку

$$t_{\rm p} = t_1 + t_2 + t_3 + t_{\rm sam} + t_{\rm pastp}, c,$$
 (2.8)

где  $t_{\text{РАЗГР}}$  – длительность разгрузки автомобиля с учетом маневров, с (табл. 2.2).

5. Определить сменную производительность автомобиля

$$\Pi_C = \frac{3.6Tk_{\rm B}Q}{t_{\rm p}}\,, (2.9)$$

и сменный пробег автомобиля

$$L_C = \frac{3.6Tk_B 2(l_1 + l_2 + l_3)}{t_B}, \text{ KM},$$
 (2.10)

где T – количество часов в смену, 8,2 часа;

Таблица 2.1 – Исходные данные к расчету

| <u>№</u> |       | цанные к расч<br>астка, м(см. | •     | Уклон участка |       |       |  |  |
|----------|-------|-------------------------------|-------|---------------|-------|-------|--|--|
| варианта | $l_1$ | $l_2$                         | $l_3$ | $i_1$         | $i_2$ | $i_3$ |  |  |
| 1        | 300   | 2000                          | 1300  | 0,02          | 0,06  | 0,045 |  |  |
| 2        | 350   | 2100                          | 400   | 0,03          | 0,08  | 0,035 |  |  |
| 3        | 400   | 3200                          | 500   | 0,04          | 0,12  | 0,025 |  |  |
| 4        | 450   | 2300                          | 300   | 0,025         | 0,05  | 0,04  |  |  |
| 5        | 500   | 2400                          | 400   | 0,035         | 0,07  | 0,03  |  |  |
| 6        | 550   | 2500                          | 500   | 0,045         | 0,10  | 0,02  |  |  |
| 7        | 600   | 2600                          | 1300  | 0,02          | 0,06  | 0,045 |  |  |
| 8        | 650   | 2700                          | 400   | 0,025         | 0,08  | 0,035 |  |  |
| 9        | 700   | 2800                          | 500   | 0,03          | 0,1   | 0,025 |  |  |
| 10       | 750   | 2900                          | 1300  | 0,04          | 0,12  | 0,04  |  |  |
| 11       | 800   | 3000                          | 400   | 0,02          | 0,06  | 0,05  |  |  |
| 12       | 850   | 3100                          | 500   | 0,03          | 0,05  | 0,04  |  |  |
| 13       | 900   | 3200                          | 300   | 0,04          | 0,065 | 0,01  |  |  |
| 14       | 950   | 3300                          | 400   | 0,02          | 0,06  | 0,045 |  |  |
| 15       | 1000  | 3400                          | 500   | 0,03          | 0,08  | 0,035 |  |  |
| 16       | 300   | 3500                          | 400   | 0,04          | 0,12  | 0,025 |  |  |
| 17       | 3500  | 3600                          | 500   | 0,05          | 0,04  | 0,02  |  |  |
| 18       | 400   | 3700                          | 1300  | 0,035         | 0,07  | 0,04  |  |  |
| 19       | 450   | 3800                          | 400   | 0,035         | 0,07  | 0,04  |  |  |
| 20       | 500   | 3900                          | 500   | 0,045         | 0,07  | 0,02  |  |  |
| 21       | 550   | 4000                          | 300   | 0,02          | 0,06  | 0,045 |  |  |
| 22       | 600   | 4100                          | 400   | 0,03          | 0,08  | 0,065 |  |  |
| 23       | 650   | 4200                          | 500   | 0,04          | 0,12  | 0,02  |  |  |
| 24       | 700   | 4300                          | 1300  | 0,025         | 0,05  | 0,04  |  |  |
| 25       | 750   | 4400                          | 400   | 0,035         | 0,07  | 0,03  |  |  |
| 26       | 800   | 4500                          | 500   | 0,045         | 0,1   | 0,02  |  |  |
| 27       | 850   | 4600                          | 1300  | 0,04          | 0,12  | 0,035 |  |  |
| 28       | 900   | 4700                          | 400   | 0,05          | 0,07  | 0,02  |  |  |
| 29       | 950   | 4800                          | 500   | 0,025         | 0,06  | 0,04  |  |  |
| 30       | 1000  | 5000                          | 1300  | 0,035         | 0,07  | 0,03  |  |  |

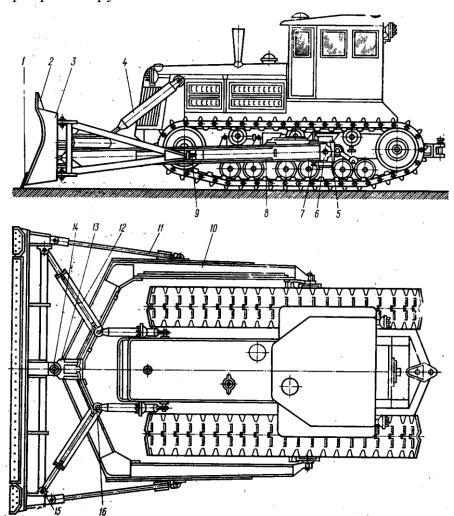
Таблица 2.2 – Технические характеристики автомобилей

|                                                     | Ma     | рка автомоби | пля    |
|-----------------------------------------------------|--------|--------------|--------|
| Показатели                                          | MA3-   | КрАЗ-        | БелАЗ- |
|                                                     | 503A   | 256B         | 540    |
| Вариант                                             | 1 -10  | 11-20        | 21-30  |
| $\Gamma$ рузоподъемность $Q_{\Gamma p}$ , кг        | 8000   | 12000        | 27000  |
| Сила веса груженного автомобиля, G <sub>3</sub> , Н | 152500 | 230000       | 480000 |
| Сила сцепного веса автомобиля, $G_{cu}$ , Н         | 100000 | 190000       | 324000 |

| Емкость ковша экскаватора, $V_{\kappa}$ , $M^3$ | 0,5 | 1,0 | 4,6 |
|-------------------------------------------------|-----|-----|-----|
| Количество ковшей грунта, п                     | 9   | 7   | 4   |
| вмещающихся в кузов                             |     |     |     |
| Продолжительность рабочего цикла                | 15  | 20  | 40  |
| экскаватора $t_{\text{ц}}$ , с                  |     |     |     |
| Продолжительность разгрузки с                   | 80  | 100 | 120 |
| маневрированием $t_{\text{разгр.}}$ , с         |     |     |     |

Таблица 2.3 — Значения коэффициентов удельного сопротивления движению f и сцепления  $\phi$  автомобилей

| № вариантов   | Характер дороги             | f     | $\varphi$ |
|---------------|-----------------------------|-------|-----------|
| 1, 2, 3, 4, 5 | На первом участке           |       |           |
|               | асфальтированное шоссе      | 0,015 | 0,65      |
|               | На втором участке сухая     |       |           |
|               | грунтовая дорога            | 0,05  | 0,6       |
|               | На третьем участке песок    | 0,2   | 0,7       |
| 6, 7, 8, 9, 0 | На первом участке гравийно- |       |           |
|               | щебеночная дорога           | 0,025 | 0,6       |
|               | На втором участке грунтовая |       |           |
|               | дорога после дождя          | 0,1   | 0,4       |
|               | На третьем участке степная  |       |           |
|               | укатанная дорога            | 0,035 | 0,35      |


#### ТЕМА: РАСЧЕТ БУЛЬДОЗЕРА

Цель занятия: Произвести расчет производительности бульдозера.

Данные для расчета приведены в таблице 9.1.

#### ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ

- 1. Определить общее усилие сопротивления при работе бульдозера.
- 2. Проверить по условию сцепления отсутствие буксования движителей трактора.
- 3. Вычислить продолжительность цикла работы бульдозера.
- 4. Определить производительность бульдозера при разработке и транспортировке грунта.



1—ножи; 2 — козырек; 3—отвал; 4—гидроцилиндры подъема и опускания отвала; 5— направляющие ползуны опорных пальцев; 6 — опорный шарнир; 7 — гидроцилиндры перекоса отвала; 8—направляющие ползунов толкателей; 9 — ползун; 10—универсальная рама; 11—толкатель; 12 — гидроцилиндр поворота отвала в плане; 13—наголовник; 14 — штырь; 15, 16—проушины Рисунок 9.1 - Бульдозер с поворотным отвалом

#### МЕТОДИКА РАСЧЕТА

1. Определяем общее усилие сопротивления при работе бульдозера по формуле

$$P' = P_{\rm p} + P_{\rm r} + P_{\rm r} + P_{\rm mr}, \tag{9.1},$$

где  $P_{p}$  – сопротивление грунта резанию, H;

 $P_{\rm n}$  – сопротивление волочению призмы грунта, H;

 $P_{\rm T}$  – сопротивление внутреннему трению, H;

 $P_{\text{пт}}$  – сопротивление передвижению базового трактора, Н.

1.1. Сопротивление грунта резанию

$$P_{p} = bck, H, \tag{9.2}$$

где b – длина отвала, м (табл. 9.2);

c – толщина срезаемого слоя, м (табл. 9.4);

k – коэффициент сопротивления грунта резанию,  $H/M^2$  (табл. 9.4).

1.2. Сопротивление волочению призмы грунта впереди отвала

$$P_{\Pi} = \frac{gh^2b\rho(\mu+i)}{tg\,\varphi_r}, \text{ H}, \tag{9.3}$$

где g – ускорение свободного падения, м/ $c^2$ ;

h – высота отвала, м (табл. 9.2);

 $\varphi_r$  – угол естественного откоса грунта,  $\varphi_r$  = 39-40°;

 $\rho$  - плотность грунта, кг/м $^3$  (табл. 9.4);

 $\mu$  - коэффициент трения грунта по грунту равный 0,3-0,5;

i – уклон пути (табл. 9.1).

1.3. Сопротивление внутреннему трению

$$P_{\rm T} = gbh^2 \rho \chi, \, H, \tag{9.4}$$

где χ - коэффициент, учитывающий влияние вида грунта (табл. 9.4).

1.4.Сопротивление движению трактора

$$P_{\text{III}} = G(f+i), \text{ H},$$
 (9.5)

где G – сила веса бульдозера с трактором, H (табл. 9.2);

f – удельное сопротивление движению (табл. 9.4).

2. Проверяем по условию сцепления отсутствие буксования движителей трактора

$$F_{\rm cu} = G\varphi \ge P \ge P', \text{ H}, \tag{9.6}$$

где  $\varphi$  - коэффициент сцепления с поверхностью пути (табл. 9.4); P – тяговое усилие трактора, H (табл. 9.3).

# 3. Вычисляем продолжительность цикла работы бульдозера по формуле $t_{_{\rm II}} = t_{_{\rm p}} + t_{_{\rm IIF}} + t_{_{\rm ox}} + t_{_{\rm JB}}, \ {\rm c}, \eqno(9.7)$

где  $t_{\rm p}$ ;  $t_{\rm nr}$ ;  $t_{\rm ox}$ ;  $t_{\rm дв}$  — время соответственно резания, перемещения грунта, обратного хода и дополнительное, с.

Таблица 9.1 - Исходные данные для расчета

|            | одные данные для расчет |                | Можно жизоно   |
|------------|-------------------------|----------------|----------------|
| № варианта | Длина участка $l_2$ ,   | Уклон <i>і</i> | Марка трактора |
| 1          | M<br>400                | 0.02           | T 100MPEH      |
| 1          | 400                     | 0,03           | Т-100М3ГП      |
| 2          | 450                     | 0,04           | T-74-09        |
| 3          | 500                     | 0,05           | ДТ-75-С2       |
| 4          | 550                     | 0,06           | Т-4АП2         |
| 5          | 600                     | 0,07           | T-100M3        |
| 6          | 650                     | 0,08           | Τ-130.1.Γ-1    |
| 7          | 700                     | 0,09           | Τ-130.1.Γ-1    |
| 8          | 750                     | 0,02           | ДЭТ-250        |
| 9          | 800                     | 0,015          | T-180          |
| 10         | 850                     | 0,020          | Т-4АП1         |
| 11         | 900                     | 0,025          | Т-100М3ГП      |
| 12         | 950                     | 0,030          | T-74-09        |
| 13         | 1000                    | 0,035          | ДТ-75-С2       |
| 14         | 900                     | 0,040          | Т-4АП2         |
| 15         | 800                     | 0,045          | T-100M3        |
| 16         | 700                     | 0,050          | Т-100М3ГП      |
| 17         | 600                     | 0,055          | T-74-09        |
| 18         | 500                     | 0,060          | ДТ-75-С2       |
| 19         | 400                     | 0,065          | Т-4АП2         |
| 20         | 300                     | 0,070          | T-100M3        |
| 21         | 350                     | 0,075          | Τ-130.1.Γ-1    |
| 22         | 400                     | 0,085          | Τ-130.1.Γ-1    |
| 23         | 450                     | 0,090          | ДЭТ-250        |
| 24         | 500                     | 0,020          | T-180          |
| 25         | 550                     | 0,025          | Т-4АП1         |
| 26         | 600                     | 0,030          | Т-100М3ГП      |
| 27         | 650                     | 0,035          | T-74-09        |
| 28         | 700                     | 0,040          | ДТ-75-С2       |

| 29 | 750 | 0,045 | Т-4АП2  |
|----|-----|-------|---------|
| 30 | 800 | 0,050 | T-100M3 |

Время резания подсчитывается по формуле

$$t_{\rm p} = \frac{l_{\rm l}}{\nu_{\rm p}}, \, \mathrm{c}, \tag{9.8}$$

где  $v_{
m p}$  – скорость движения бульдозера при резании грунта, м/с.

Здесь и далее скорости подбираются по табл. 9.3 из условия, что окружное усилие на ободе ведущего колеса (звездочке) больше суммы сил сопротивлений, действующих на бульдозер при выполнении определенной операции;

 $l_1$  – длина пути резания, определяемая по формуле

$$l_1 = \frac{h^2}{2\mu c}, \text{ M},$$
 (9.9)

Время перемещения грунта определим по формуле

$$t_{\text{IIT}} = \frac{l_2}{\nu_{\text{IIT}}}, c,$$
 (9.10)

где  $l_2$  – длина пути перемещения грунта, м (табл. 9.1);

 $v_{\rm nr}$  – скорость движения бульдозера при перемещении грунта, м/с.

Время обратного хода бульдозера определим по формуле

$$t_{\rm ox} = \frac{l_1 + l_2}{\nu_{\rm ox}}, c, \tag{9.11}$$

где  $\nu_{\rm ox}$  – скорость движения бульдозера при обратном ходе, м/с;

t — дополнительное время, с.

В дополнительное время входит время на переключение скорости (до 5 с), подъем и опускание отвала (до 4 с) и разворот трактора (до 10 с).

4. Определяем производительность бульдозера при разработке и транспортировке грунта

$$\Pi = \frac{1}{2} abhn \psi \frac{1}{k_p}, \, M^3/\Psi,$$
(9.12)

где  $k_{\rm p}$  – коэффициент разрыхления грунта (табл. 9.4);

а – ширина призмы грунта впереди отвала

$$a = \frac{h}{tg\,\varphi_r},\tag{9.13}$$

 $\psi$  - коэффициент потери грунта

$$\psi = 1 - 0.0005l_2 \tag{9.14}$$

n — число циклов за один час работы

$$n = \frac{3600}{t_{\rm u}}. (9.15)$$

Таблица 9.2 - Характеристика бульдозеров

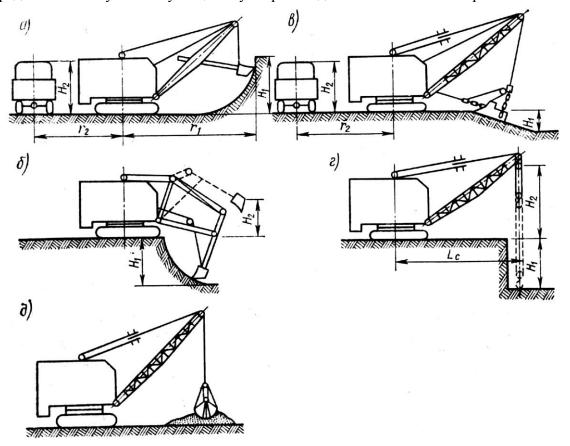
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Д3-         | <b>4XII</b> | Т 330 | 000-            | 25             |           | 465,0                       |                 | 4,73                 | 1.55                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------|-----------------|----------------|-----------|-----------------------------|-----------------|----------------------|--------------------------------------|
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             | _     |                 | - 5            |           |                             |                 | 3,6                  |                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Д3-         |             |       |                 | 25             |           | 4                           |                 | 3,                   |                                      |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т3-         | 118         | -тей  | 250M            | 25             |           | 348,0 440,0                 |                 | 4,31                 | 1.37                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -EIT        | 35E         | -L    | 180KC           | 51             |           | 202,9                       |                 | 3,64                 | 71                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -EIT        | 35          | U01 1 |                 | 51             |           | 170,6                       |                 | 3,36                 | 1.2                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Д</u> 3- | 110A        | T 130 | 0CT-T           | 10             |           | 160,5                       |                 | 3,22                 | 1.18                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -£∏         | 110         | T 130 | 1-130           | 10             |           | 133,5 163,0 160,5 170,6     |                 | 3,22                 | 1.15                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -£∏         | 27C         | 061 T | OCT-T           | 01             |           | 133,5                       |                 | 3,22                 | 11                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -€∏         | 54          | -I    | 100M            | 01             |           | 137,1                       |                 | 3,22                 | $\Gamma\Gamma$                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Т3-         | 101A        | -I    | 4AII2           | 4              |           | 101,5                       |                 | 2,8                  | 66 0                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -ЕП         | 101         | -L    | 4AII1 4AII2     | <b>b</b>       |           | c 65,6 69,1 72,5 98,2 101,5 |                 | 2,56 2,56 2,56 2,8   | 660                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -EII        | 128         | -ДД   | 7511            | 3              |           | 72,5                        |                 | 2,56                 | 8.0                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -EII        | 42L         | -Ш    |                 | 3              |           | 69,1                        |                 | 2,56                 | 8.0                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -EII        | 53          | 12 T  | ±/-T            | 3              |           | 65,6                        |                 |                      | 8.0                                  |
| To be a second of the second o | Попемене    | Hapamerpu   |       | разовый грактор | Класс трактора | Сила веса | бульдозера с                | трактором G, кН | Длина отвала $b$ , м | Высота отвала //, м 0,8 0,8 0,8 0,99 |

Таблица 9.3 – Технические характеристики тракторов

| Lavarania 2.0 | I avainta 2.2 - I cannicente aapanicpueinen ipaniopon | darwada u | 9    |      |      |          |      |      | •    |
|---------------|-------------------------------------------------------|-----------|------|------|------|----------|------|------|------|
| Марка         | 1                                                     |           |      |      | Пере | Тередача |      |      |      |
| трактора      | Параметры                                             | 1         | 2    | 8    | þ    | 5        | 9    | 7    | 8    |
| ДТ-75-C2      | Скорость, v, м/с                                      | 1,47      | 1,64 | 1,83 | 2,03 | LCC      | 2,52 | 3,11 | ·    |
|               | Тяговое усилие, Р, кН                                 | 34,7      | 30,6 | 27,0 | 23,8 | 20,3     | 17,9 | 13,5 | ı    |
| Т-4АП1        | Скорость, v, м/с                                      | 96'0      | 1,12 | 1,29 | 1,40 | 92'1     | 2,04 | 2,38 | 2,65 |
| T-4AII2       | Тяговое усилие, Р, кН                                 | 50,0      | 50,0 | 50,0 | 49,6 | 41,6     | 34,9 | 29,2 | 25,5 |
| T-100M3       | Скорость, v, м/с                                      | 99'0      | 1,05 | 1,25 | 1'16 | 7,04     | -    | -    | ı    |
| T-100M3III    | Тяговое усилие, Р, кН                                 | 050       | 26,0 | 45,5 | 29,0 | 15,0     | ı    | ı    | ļ    |
| T-130.1.F-1   | Скорость, v, м/с                                      | 68'0      | 1,06 | 1,23 | 1,46 | 92'1     | 2,12 | 2,46 | 2,93 |
|               | Тяговое усилие, Р, кН                                 | 050       | 77,0 | 65,0 | 53,0 | 42,0     | 33,0 | 27,3 | 21,0 |
| T-180         | Скорость, v, м/с                                      | 6,70      | 1,29 | LL'1 | 7,4  | 88'8     | -    | -    | ı    |
| ДЭТ-250       | Тяговое усилие, Р, кН                                 | 132,8     | 81,8 | 59,2 | 43,6 | 26,2     | -    | -    | -    |
| T-74-C9       | Скорость, v, м/с                                      | 1,2       | 1,51 | 98'1 | 2,12 | 5,6      | 3,19 | ı    | ı    |
|               | Тяговое усилие, $P$ , к $H$                           | 34,0      | 27,0 | 27,0 | 18,2 | 14,1     | 10,7 | ı    | Ī    |

Таблица 9.4 – Характеристика грунтов

| 0                        | 0,10        | 0,15                    | 0,25                     | 0,15               |                 | 0,10               | 0,10        | 0,15                    | 0,25                     | 0,15               |                 | 0,10               |
|--------------------------|-------------|-------------------------|--------------------------|--------------------|-----------------|--------------------|-------------|-------------------------|--------------------------|--------------------|-----------------|--------------------|
| $k_{ m p}$               | 1,1         | 1,15                    | 1,30                     | 1,30               |                 | 1,25               | 1,1         | 1,15                    | 1,30                     | 1,30               |                 | 0,85 1,25          |
| φ                        | 0.50        | 0,70                    | 09'0                     | 0,55               |                 | 0,85               | 0.50        | 0,70                    | 09'0                     | 0,55               |                 |                    |
| f                        | 0.15        | 0,05                    | 80,0                     | 0,20               |                 | 0,25               | 0.15        | 0,05                    | 80,0                     | 0,20               |                 | 0,25               |
| χ                        | 0.48        | 0,46                    | 0,43                     | 0,39               |                 | 0,31               | 0.48        | 0,46                    | 0,43                     | 0,39               |                 | 0,31               |
| $k_{\varsigma}$ H/ $M^2$ | $12x10^{4}$ | $11.6 \times 10^4$      | $11,2 \times 10^4$       | $10.8 \times 10^4$ |                 | $10,4 \times 10^4$ | $12x10^{4}$ | $11.6 \times 10^4$      | $11,2 \times 10^4$       | $10.8 \times 10^4$ |                 | $10,4 \times 10^4$ |
| $ ho_{ m s}$             | 1500        | 1650                    | 1555                     | 1700               |                 | 1750               | 1500        | 1650                    | 1555                     | 1700               |                 | 1750               |
| Трунг                    | Сухой песок | Песок влажностью 12-15% | Чернозем влажностью 4-6% | Супесь и суглинок  | влажностью 4-6% | Сухая глина        | Сухой песок | Песок влажностью 12-15% | Чернозем влажностью 4-6% | Супесь и суглинок  | влажностью 4-6% | Сухая глина        |
| №<br>варианта            | 1           | 2                       | 3                        | 4                  |                 | 5                  | 9           | 7                       | 8                        | 6                  |                 | 0                  |


Дополнительный вариант выбирается по последней цифре зачетной книжки.

#### РАСЧЕТ ПРОИЗВОДИТЕЛЬНОСТИ ОДНОКОВШОВОГО ЭКСКАВАТОРА

**Цель занятия:** Изучить кинематическую схему, научиться определять техническую и сменную эксплуатационную производительность одноковшового экскаватора

#### ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ

- 1. Определить техническую производительность экскаватора.
- 2. Определить сменную эксплуатационную производительность экскаватора.



а—прямая лопата; б—обратная лопата; в—драглайн; г—кран; д — грейфер;  $H_1$  — высота (глубина) копания;  $H_2$ —высота разгрузки (подъема);  $r_1$  — радиус копания;  $r_2$ — радиус выгрузки

Рисунок 8.1 - Основные виды рабочего оборудования одноковшовых экскаваторов

#### МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ

Таблица 8.1 – Исходные данные для расчета

| Ba- | Высота | Вмести-        | Группа | Угол пово-    | угловая   | Номер пози-  |
|-----|--------|----------------|--------|---------------|-----------|--------------|
| ри- | забоя  | мость $Q$ ,    | грунта | рота экскава- | скорость  | ции элемента |
| ант | Н, м   | $\mathbf{M}^3$ |        | тора, град    | вращения  | для расчета  |
|     |        |                |        |               | вала      |              |
|     |        |                |        |               | двигателя |              |
| 1   | 6,2    | 7,2            | I      | 90            | 84        | 24           |
| 2   | 5,8    | 6,0            | II     | 135           | 84        | 7            |
| 3   | 5,4    | 5,3            | III    | 180           | 84        | 10           |
| 4   | 5,0    | 5,0            | IV     | 90            | 84        | 20           |
| 5   | 4,5    | 3,0            | I      | 135           | 84        | 6            |
| 6   | 4,0    | 7,2            | II     | 180           | 84        | 21           |

| 7  | 6,2 | 6,0 | III | 90  | 84  | 9  |
|----|-----|-----|-----|-----|-----|----|
| 8  | 5,8 | 5,3 | IV  | 135 | 84  | 18 |
| 9  | 5,4 | 5,0 | I   | 180 | 84  | 25 |
| 10 | 5,0 | 3,0 | II  | 90  | 84  | 19 |
| 11 | 4,5 | 7,2 | III | 135 | 94  | 11 |
| 12 | 4,0 | 6,0 | IV  | 180 | 94  | 5  |
| 13 | 6,2 | 5,3 | I   | 90  | 94  | 12 |
| 14 | 5,8 | 5,0 | II  | 135 | 94  | 13 |
| 15 | 5,4 | 3,0 | III | 180 | 94  | 22 |
| 16 | 5,0 | 7,2 | IV  | 90  | 94  | 21 |
| 17 | 4,5 | 6,0 | I   | 135 | 94  | 20 |
| 18 | 4,0 | 5,3 | II  | 180 | 94  | 19 |
| 19 | 6,2 | 5,0 | III | 90  | 94  | 18 |
| 20 | 5,8 | 3,0 | IV  | 135 | 94  | 18 |
| 21 | 5,4 | 7,2 | I   | 180 | 104 | 19 |
| 22 | 5,0 | 6,0 | II  | 90  | 104 | 20 |
| 23 | 4,5 | 5,3 | III | 135 | 104 | 21 |
| 24 | 4,0 | 5,0 | IV  | 180 | 104 | 22 |
| 25 | 6,2 | 3,0 | I   | 90  | 104 | 23 |
| 26 | 5,8 | 7,2 | II  | 135 | 104 | 24 |
| 27 | 5,4 | 6,0 | III | 180 | 104 | 25 |
| 28 | 5,0 | 5,3 | IV  | 90  | 104 | 24 |
| 29 | 4,5 | 5,0 | I   | 135 | 104 | 23 |
| 30 | 4,0 | 3,0 | II  | 180 | 104 | 15 |

1. Определяем техническую производительность одноковшового экскаватора по формуле

$$\Pi_{TEX} = \frac{3600gk_H}{t_{II}k_p}, \text{ M}^3/\text{H},$$
 (8.4)

где g – емкость ковша экскаватора, м<sup>3</sup> (табл. 8.5);

 $k_{\rm H}$  – коэффициент наполнения ковша грунтом (табл. 8.4);

 $k_{\rm p}$  – коэффициент разрыхления грунта в ковше (табл. 8.4);

 $t_{\rm II}$  – продолжительность рабочего цикла.

$$t_{_{\Pi}} = t_{_{K}} + t_{_{\Pi}} + t'_{_{\Pi}} + t_{_{p}}, c,$$
 (8.5)

где  $t_{\rm p}$  – время разгрузки, принимаем 2 с;

 $t_{\kappa}$  – время копания грунта.

$$t_{\rm k} \le 2.7 \sqrt[4]{G} k_{\rm B}, \ {\rm c},$$
 (8.6)

где  $k_B$  – коэффициент изменения времени копания (табл. 8.4);

G – масса экскаватора, т (табл. 8.5);

 $t_{\rm II}$  — время поворота экскаватора к месту разгрузки, с;

 $t'_{\Pi}$  — время поворота экскаватора к исходному положению, с, принимаем  $t_{\Pi}=t'_{\Pi}$ , поэтому  $t_{\Pi}+t'_{\Pi}=2~t_{\Pi}$ .

Время 2  $t_{\rm п}$  выбирается по следующей зависимости, заданной углом поворота экскаватора

90° 
$$2 t_{\Pi} \le 1,2R_{\text{B}}$$
  
135°  $2 t_{\Pi} \le 1,55R_{\text{B}}$ 

$$180^{\circ}$$
  $2 t_{\text{II}} \leq 1,99 R_{\text{B}}$ 

где  $R_{\rm B}$  – радиус выгрузки, м (табл. 8.5).

1. Определяем сменную эксплуатационную производительность экскаватора

$$\Pi_{\rm cm} = \Pi_{\rm Tex} K_{\rm TD} K_{\rm HeD} \Pi_{\rm p}, \tag{8.7}$$

где  $K_{\rm rp}$  – коэффициент, учитывающий перерывы на смену транспортных средств у экскаватора

$$K_{\rm rp} = \frac{Q/\Pi_{\rm rex}}{Q/\Pi_{\rm rex} + t_{\rm o6M}},\tag{8.8}$$

где Q – емкость кузова автосамосвала, м<sup>3</sup> (табл. 8.1);

 $t_{\text{обм}}$  – время обмена автосамосвала у экскаватора, принимаем 0,01 ч;

 $K_{\text{пер}}$  – коэффициент, учитывающий время на передвижение экскаватора.

$$K_{\mathit{\Pi EP}} = \frac{V \, / \, \Pi_{\mathit{TEX}} K_{\mathit{TP}}}{V \, / \, \Pi_{\mathit{TEX}} K_{\mathit{TP}} + t_{\mathit{\Pi EP}}} \, .$$

 $t_{\text{пер}}$  – время передвижения экскаватора к новому элементу забоя, принимаем равное 0,018

V – объем элемента забоя, разрабатываемый с одной стоянки.

$$V = \frac{\pi H}{2} \left[ R^2 - (R - l_p)^2 \right], \text{ m}^3$$
 (8.9)

где H – высота забоя, м (табл. 8.1);

ч;

R – наибольший радиус копания, м (табл. 8.5);

 $l_{\rm p}$  – длина рукоятки, м (табл. 8.5);

 $\dot{H}_{\rm p}$  — число часов работы экскаватора в смену, исключая время на пересмену, смазку машины, крепежный ремонт, очистку ковша и т.д., принимаем 7 ч.

Таблица 8.3 – Характеристика грунтов

| № ва-  | Грунт             | ρ,                 | k,                 | χ    | f    | φ    | $k_{\rm p}$ |
|--------|-------------------|--------------------|--------------------|------|------|------|-------------|
| рианта |                   | $\kappa\Gamma/M^3$ | $H/M^2$            |      |      | -    |             |
| 1      | Сухой песок       | 1500               | $12x10^4$          | 0.48 | 0.15 | 0.50 | 1.10        |
| 2      | Песок влажностью  | 1650               | $11,6 \times 10^4$ | 0,46 | 0,05 | 0,70 | 1,15        |
|        | 12-15%            |                    |                    |      |      |      |             |
| 3      | Чернозем          | 1555               | $11,2 \times 10^4$ | 0,43 | 0,08 | 0,60 | 1,30        |
|        | влажностью 4-6%   |                    |                    |      |      |      |             |
| 4      | Супесь и суглинок | 1700               | $10.8 \times 10^4$ | 0,39 | 0,20 | 0,55 | 1,30        |
|        | влажностью 4-6%   |                    |                    |      |      |      |             |
| 5      | Сухая глина       | 1750               | $10,4 \times 10^4$ | 0,31 | 0,25 | 0,85 | 1,25        |
| 6      | Сухой песок       | 1500               | $12x10^4$          | 0.48 | 0.15 | 0.50 | 1.10        |
| 7      | Песок влажностью  | 1650               | $11,6 \times 10^4$ | 0,46 | 0,05 | 0,70 | 1,15        |
|        | 12-15%            |                    |                    |      |      |      |             |
| 8      | Чернозем          | 1555               | $11,2 \times 10^4$ | 0,43 | 0,08 | 0,60 | 1,30        |
|        | влажностью 4-6%   |                    |                    |      |      |      |             |
| 9      | Супесь и суглинок | 1700               | $10.8 \times 10^4$ | 0,39 | 0,20 | 0,55 | 1,30        |
|        | влажностью 4-6%   |                    |                    |      |      |      |             |
| 0      | Сухая глина       | 1750               | $10,4 \times 10^4$ | 0,31 | 0,25 | 0,85 | 1,25        |

#### Дополнительный вариант выбирается по последней цифре зачетной книжки

Таблица 8.4 – Значения коэффициентов

| Группа грунта                                               | I    | II  | III  | IV   |
|-------------------------------------------------------------|------|-----|------|------|
| Коэффициент наполнения, $K_{\rm H}$                         | 1,05 | 1,1 | 1,2  | 1,05 |
| Коэффициент рыхления грунта, $K_p$                          | 1,05 | 1,1 | 1,15 | 1,2  |
| Коэффициент времени копания, $K_{\scriptscriptstyle \rm B}$ | 0,75 | 0,9 | 1,0  | 1,3  |

Таблица 8.5 – Параметры экскаваторов

| Поморожани              |         | -       | Марка эк | скаватора |         |         |
|-------------------------|---------|---------|----------|-----------|---------|---------|
| Показатель              | ЭО-3311 | ЭО-4111 | ЭО-1001  | ЭО-6111   | ЭО-6112 | ЭО-2505 |
| Дополнитель ный вариант | 1,2     | 3,4     | 5,6      | 7,8       | 9       | 0       |
| $g, M^3$                | 0,4     | 0,65    | 1,0      | 1,25      | 1,25    | 2,5     |
| <b>G</b> , т            | 11,7    | 22,6    | 36,0     | 43,0      | 42,0    | 94,0    |
| $R_{\rm B}$ , M         | 5,4     | 7,2     | 7,4      | 7,9       | 8,3     | 9,7     |
| R, м                    | 5,9     | 7,8     | 8,4      | 9,9       | 9,1     | 11,1    |
| $l_{\rm p}$ ,           | 2,3     | 4,5     | 4,91     | 4,9       | 4,9     | 6,1     |

# Эксплуатационные расчеты многоковшовых траншейных экскаваторов

Последовательность выполнения работы

- 1. По заданной глубине и ширине траншей выбрать экскаватор.
- 2. Определить техническую производительность экскаватора.
- 3. Определить оптимальную скорость передвижения экскаватора.
- 4. Выбрать рабочую скорость передвижения экскаватора.
- 5. Определить сменную эксплуатационную производительность экскаватора.
  - 6. Рассчитать количество смен работы экскаватора на отрывке траншей.

#### Методика расчета

- 1. Выбирая экскаватор, надо исходить из условия, что он должен обеспечить рытье траншей заданной глубины и ширины. Технические характеристики основных марок (индексов) многоковшовых траншейных экскаваторов приведены в табл. 1.
- **2.** Определяем техническую производительность экскаватора  $\Pi_{\text{тех.}}$  Она зависит от вместимости ковша и числа разгрузок их за единицу времени

$$\Pi_{\text{Tex}} = 3.6 \frac{q}{K_n} \cdot n_{\text{K}}, \, \text{M}^3/\text{q}, \tag{1}$$

где 3, 6 – коэффициент перевода из литров в м<sup>3</sup> и из секунд в часы;

q – вместимость ковша, л (табл. 1);

 $K_p$  – коэффициент первоначального разрыхления грунта (табл. 2);

 $n_{\kappa}$  – количество ковшей, разгружаемых в секунду.

Количество ковшей, разгружаемых в секунду, для цепных траншейных экскаваторов с ковшовым рабочим органом равно

$$n_{K} = \frac{g_{ij}}{l}, c^{-1}, \qquad (2)$$

где  $\theta_{u}$  – скорость цепи, м/с (табл. 1);

1 – шаг ковшей, (расстояние между ковшами на цепи), м (табл. 1).

Количество ковшей, разгружаемых в секунду, для роторных траншейных экскаваторов равно

$$n_{k}=n_{p}\cdot m, c^{-1}, \qquad (3)$$

где  $n_p$  – частота вращения ротора,  $c^{-1}$ , (табл. 1);

т – число ковшей на роторе (табл. 1).

**3.** Определяем оптимальную рабочую скорость, которая обеспечивает наибольшую производительность экскаватора и наилучшее использование его двигателя.

Для расчета принимаем, что оптимальная рабочая скорость экскаватора соответствует его технической производительности при отрывке траншеи заданных размеров:

$$V_{\text{опт}} = \frac{\Pi_{mex}}{B \cdot H}, \quad \text{M/H}, \tag{4}$$

где  $\Pi_{\text{тех}}$  – техническая производительность экскаватора, м<sup>3</sup>/ч – формула (1);

В – ширина траншеи, м, по заданию (табл. 3);

Н – глубина траншеи, м (там же).

**4.** Рабочую скорость передвижения экскаватора выбираем согласно технической характеристике экскаватора (табл. 1). Рабочая скорость передвижения экскаватора равна расчетной оптимальной — формула (4) или принимается ближайшей к ней меньшей (табл. 1):

$$V_p \leq V_{onm}$$
,

где  $V_p$  – рабочая скорость (табл. 1);

 $V_{\text{опт}}$  – оптимальная рабочая скорость, рассчитанная по формуле (4).

5. Сменную эксплуатационную производительность экскаватора на отрывке траншеи заданных размеров определяем по формуле

$$\Pi_{\mathfrak{I}} = T \cdot B \cdot H \cdot Vp \cdot K_B$$
, м3/смену, (5)

где В – ширина траншеи, м;

Н – глубина траншеи, м;

T – продолжительность смены в часах (например, T = 8 часов);

 $V_p$  – рабочая скорость экскаватора (табл. 1);

 $K_{\mbox{\tiny B}}$  — коэффициент использования экскаватора по времени в течение смены (0,5...0,8).

Количество смен работы экскаватора зависит от объема работ и определяется по формуле

$$T_{cM} = V_{TP} / \Pi_9$$
, cm,

где  $V_{TP}$  – объем траншеи,  $V_{TP} = B \cdot H \cdot L$ , м<sup>3</sup>;

L – длина траншеи, м; (табл. 3).

Таблица 1. Технические характеристики траншейных экскаваторов

|                                     |           | <u> </u> | 10011110 /10 | <u>ірактеристи</u> | Инд     |          | параторо |          |          |         |
|-------------------------------------|-----------|----------|--------------|--------------------|---------|----------|----------|----------|----------|---------|
| Показатель                          | ЭТЦ-202Б  | ЭТЦ-206  | ЭТЦ-402      | ЭТЦ-406            | 3TP-134 | ЭТР-204A | ЭТР-223А | ЭТР-224A | ЭТР-253A | ЭТР-254 |
| 1. Размеры разрабатываемой траншеи: |           |          |              |                    |         |          |          |          |          |         |
| глубина, м<br>ширина (по дну),      | 12,3      | 12,3     | 4            | 24,5               | 1,3     | 2        | 2,2      | 2,2      | 2,5      | 2,4     |
| м<br>2. Вместимость                 | 0,5       | 0,4      | 0,81,2       | 0,66               | 0,30    | 1,2      | 1,5      | 0,85     | 2,1      | 1,8;2,1 |
| ковша, м                            | 23        | 25       | 40           | 70                 | _       | 140      | 160      | 85       | 250      | 148     |
| 3.Шаг ковшей, м<br>4. Количество    | 0,96      | 0,25     | 0,8          | 0,95               | _       | _        | _        | _        | _        | _       |
| ковшей, шт.                         | 12        | 36       | 25           | 20                 | 18      | 14       | 14       | 16       | 14       | 24      |
| 5. Скорость цепи,                   | 0,78;1,31 | 1,4;1,64 | 1,12         | 01,87              | 1,92    | 1,45;1,8 | 1,45;1,8 | 1,45;1,8 | 1,88     | 1,874   |
| м/с<br>6. Частота                   |           |          |              |                    |         |          |          |          |          |         |
| вращения ротора,                    |           |          |              |                    |         | 0,13;    | 0.10     | 0.15     | 0.422    | 0.120   |
| с <sup>-1</sup><br>7. Рабочая       | _         | _        | _            | _                  | _       | 0,158    | 0,12     | 0,15     | 0,133    | 0,128   |
| скорость, м/ч                       | 15590     | 15215    | 0290         | 17,5150            | 10480   | 10300    | 10300    | 10300    | 20280    | 20500   |
| 8. Двигатель                        | Д-242     | Д-130    | AM-01        | Д-160              | TT-4    | Д-130/   | Д-130/   | Д-130/   | ДЭТ-     | ЯМЗ-240 |
| (или трактор)                       |           |          |              |                    |         | 160      | 160      | 160      | 250м     |         |
| 9. Мощность, кВт                    | 157       | 107      | 96           | 107                | 96      | 107      | 107      | 107      | 243      | 265     |

Таблица 2. Коэффициенты первоначального разрыхления грунта

| Грунт                         | $K_{n,p}$ |
|-------------------------------|-----------|
| Суглинок легкий и лессовидный | 1,24      |
| Суглинок тяжелый              | 1,3       |
| Лесс естественной влажности   | 1,29      |
| Глина ломовая                 | 1,32      |
| Глина мягкая жирная           | 1,3       |

Таблица 3. Варианты заданий

| Вари | Грунт                | Pa <sub>3</sub> : | меры транш | ей, м |
|------|----------------------|-------------------|------------|-------|
| ант  |                      | Глубина           | Ширина     | Длина |
| 1.   | Суглинок лессовидный | 2                 | 0,3        | 1000  |
| 2.   | То же                | 3,5               | 0,4        | 1500  |
| 3.   | <b>«</b>             | 4                 | 0,5        | 1200  |
| 4.   | <b>«</b>             | 1,6               | 0,66       | 1100  |
| 5.   | <b>«</b>             | 1,8               | 0,8        | 2000  |
| 6.   | Суглинок тяжелый     | 1,8               | 0,85       | 2000  |
| 7.   | То же                | 3,2               | 1          | 1800  |
| 8.   | <b>«</b>             | 3,8               | 1,1        | 1500  |
| 9.   | <b>«</b>             | 1,4               | 1,2        | 1000  |
| 10.  | <b>«</b>             | 1,8               | 1,5        | 2500  |
| 11.  | Лесс                 | 1,7               | 1,8        | 500   |
| 12.  | То же                | 3                 | 2,1        | 800   |
| 13.  | <b>«</b>             | 3,7               | 0,3        | 900   |
| 14.  | <b>«</b>             | 1,5               | 0,4        | 700   |
| 15.  | <b>«</b>             | 1,6               | 0,5        | 600   |
| 16.  | Глина ломовая.       | 1,9               | 0,66       | 200   |
| 17.  | То же                | 3,4               | 0,8        | 1800  |
| 18.  | <b>«</b>             | 3,6               | 0,85       | 1900  |
| 19.  | <b>«</b>             | 1,6               | 1          | 1700  |
| 20.  | <b>«</b>             | 1,7               | 1,1        | 1600  |
| 21.  | <b>«</b>             | 2                 | 1,2        | 1500  |

#### ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4

## **ТЕМА: ВЫЧИСЛЕНИЕ СМЕННОЙ ПРОИЗВОДИТЕЛЬНОСТИ БАШЕННОГО КРАНА**

Цель занятия: определить производительность башенного крана

Данные для расчета приведены в табл. 5.1 и 5.2.

Краном (рис. 5.1) монтируют сборные конструктивные элементы здания и за один цикл поднимают и устанавливают одну конструкцию.

#### ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ ЗАДАНИЯ

- 1. Определить необходимую высоту подъема крюка и вылет стрелы соответствующей этой высоте.
- 2. Вычислить коэффициент использования крана по грузоподъемности.
- 3. Начертить рабочую зону крана в масштабе.
- 4. Определить продолжительность отдельных операций рабочего цикла крана.
- 5. Вычислить длительность рабочего цикла крана без совмещения операций и при совмещении операций.
- 6. Начертить схемы последовательности операций рабочего цикла.
- 7. Определить эксплуатационную производительность башенного крана при работе по совмещенному и не совмещенному циклам.

#### МЕТОДИКА РАСЧЕТА

1. Требуемую высоту подъема крюка (рис. 5.1) определяем суммированием:

$$H_{\rm TP} = H + l_{\rm CT} + h_{\rm M3Д} + h_{\rm 3A\Pi}, \, M$$
 (5.1)

где Н - заданная высота уровня монтажа, м (табл. 5.1);

 $l_{\rm CT}$  - длина стропов, м (табл. 5.1);

 $h_{\rm ИЗЛ}$  - высота изделия, м (табл. 5.1);

 $h_{3{\rm A}\Pi}$  - высота подъема груза над уровнем контакта (по условиям техники безопасности принимаем равной 2,5 - 3 м).

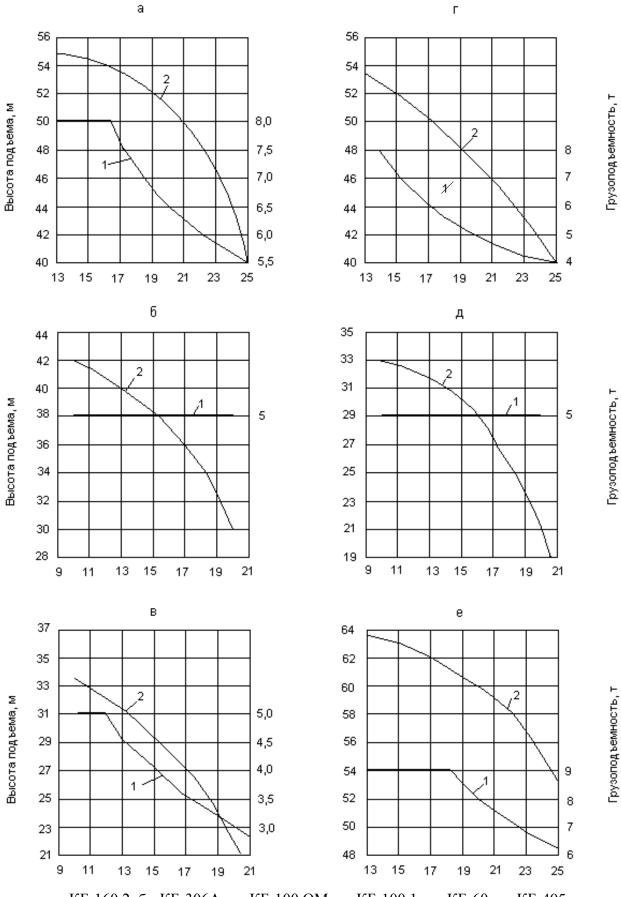
По полученному значению Нтр из графика на рис. 5.2 находим вылет стрелы и грузоподъемность крана при этом вылете.



2. Вычисляем коэффициент использования крана по грузоподъемности:

$$k_{\Gamma} = \frac{G}{Q},\tag{5.2}$$

где G - масса изделия, т (табл. 5.1);


Q - грузоподъемность крана при выбранном вылете стрелы, т (рис. 5.2).

- 3. Чертим рабочую зону крана в масштабе на основании рис. 5.1 с учетом данных числовых значений варианта и выбранного вылета стрелы R. Расстояние k от оси подкранового пути до здания и склада принимаем равным 4-5 м.
  - 4. Определяем продолжительность следующих операций рабочего цикла крана:
  - $t_1$  строповка монтируемого изделия, с;
  - t2 подъем изделия до нужного уровня, c;
  - t3 поворот стрелы крана, с.
  - *t*4 перемещение крана по рельсовому пути;
  - t5 опускание груза до уровня монтажа, c;
- $t_6$  удержание монтируемого изделия во время установки, закрепления, подливки раствора, выверке положения и других операций, с.
  - *t*7 расстроповка монтируемого изделия, с;
  - *t*8 подъем крюка с грузозахватными приспособлениями над уровнем монтажа, с;
  - *t*9 возвратный поворот стрелы, с;
  - $t_{10}$  возвратное перемещение крана, с;
  - *t*11 опускание крюка с грузозахватными приспособлениями, с.

Продолжительность ручных операций  $t_1$ ,  $t_6$ ,  $t_7$  принимаем по нормативным данным (табл. 5.1), а длительность остальных операций вычисляем приближенно по установившимся скоростям рабочих движений крана, без учета периодов разгона и торможения.

Таблица 5.2 – Технические характеристики башенных кранов

| Показатели                                                                       | КБ-<br>160.2 | КБ-<br>306A | КБ-<br>100.ОМ | КБ-<br>100.1 | КБ-60  | КБ-<br>405 |
|----------------------------------------------------------------------------------|--------------|-------------|---------------|--------------|--------|------------|
| Скорость подъема и опускания груза м/с $\upsilon_{\Pi O J}$ , $\upsilon_{O \Pi}$ | 0,37         | 0,40        | 0,33          | 0,21         | 0,33   | 0,33       |
| Скорость пер. крана м/с                                                          | 0,3          | 0,3         | 0,48          | 0,48         | 0,5    | 0,3        |
| Частота вращения башни, ω, с <sup>-1</sup>                                       | 0,01         | 0,01        | 0,0117        | 0,0117       | 0,0117 | 0,01       |



а - КБ-160.2, б - КБ-306А, в - КБ-100.ОМ, г - КБ-100.1, д - КБ-60, е - КБ-405

1- грузоподъемность; 2 - высота подъема

Рисунок 5.2 - Графики грузоподъемности и высоты подъема кранов Продолжительность подъема

$$t_2 = \frac{H + h_{3\text{A}\Pi}}{\upsilon_{\text{ΠΟΠ}}}, c \tag{5.3}$$

где  $v_{\Pi O \Pi}$  – скорость подъема изделия, м/с (табл. 5.2).

Рабочий поворот

$$t_3 = \frac{\alpha_{\rm CP}}{\omega}, c \tag{5.4}$$

где  $\alpha_{CP}$  – средний угол, рад;

 $\omega$  - угловая скорость поворотной платформы, с  $^{-1}$ 

Средний рабочий угол поворота находим по схеме рабочей зоны крана (рис. 5.1) графическим способом или аналитическим способом по формуле:

$$\alpha_{\rm CP} = \alpha_1 + \alpha_2 = \arcsin\frac{k + \frac{c}{2}}{R} + \arcsin\frac{k + \frac{a}{2}}{R}$$
, рад (5.5)

где R – расчетный вылет стрелы.

Время перемещения крана по рельсовому пути:

$$t_4 = \frac{L_{\text{TIEP}}}{v_{\text{TIEP}}}, c \tag{5.6}$$

где  $L_{\Pi EP}$  - средний путь перемещения, м

υπер - скорость перемещения, м/с (таблица 2.6)

Средний путь перемещения крана (рис. 5.1) принимаем равным расстоянию между центрами рабочих зон склада и здания. Определяем его графически или аналитически по формуле

$$L_{\text{TIEP}} = \frac{b+d}{2} - l + R(\cos\alpha_1 - \cos\alpha_2), \,\text{M}$$
 (5.7)

Время опускания груза до уровня монтажа

$$t_5 = \frac{h_{3\text{AII}}}{v_{\text{OII}}}, c \tag{5.8}$$

где  $v_{OII}$  - скорость опускания изделия, м/с (таблица 5.2).

Продолжительность подъема крюка со стропами над уровнем монтажа

$$t_8 = \frac{h_{3\text{AII}}}{\nu_{\text{HOII}}}, c \tag{5.9}$$

Длительность остальных операций определяем аналогично:

$$t_{0} = t_{3}; \tag{5.10}$$

$$t_{10} = t_4; (5.11)$$

$$t_{11} = \frac{H + h_{3\text{A}\Pi}}{v_{\text{O}\Pi}} \,. \tag{5.12}$$

5. Вычисляем длительность рабочего цикла крана. При работе совмещения операций рабочий цикл крана равен сумме времени всех его операций

$$t_{II} = \sum_{i=1}^{11} t. (5.13)$$

Для повышения производительности крана некоторые операции можно совмещать (например, подъем и перемещение груза). В этом случае при подсчете длительности рабочего цикла учитывают только наиболее длительную из совмещаемых операций:

$$t_{\text{II}}^{\text{COBM}} = t_1 + t_{2 \succ (4)} + t_5 + t_6 + t_7 + t_8 + t_{10 \succ (11)}. \tag{5.14}$$

Вычисление длительности циклов (несовмещенного и совмещенного) надо иллюстрировать выполненными в масштабе схемами (рис. 5.3). Схема для совмещенных операций выполняется следующим образом. Не совмещаемые операции составляют в один ряд, а совмещаемые показываются сверху или снизу от основной, большей по длительности на совмещаемых, как это показано на рисунке 5.3б.

6. Определяем сменную эксплуатационную производительность башенного крана при работе по совмещенному и не совмещенному циклам:

$$\Pi_{\rm CM} = TQk_{\Gamma}k_{\rm B}n$$
, т/смену (5.15)

где Т – продолжительность смены, ч;

Q – грузоподъемность крана, т, при данном вылете стрелы;

 $k_{\Gamma}$  – коэффициент использования крана по грузоподъемности;

 $k_{\rm B}$  – коэффициент использования крана по времени на протяжении смены, равный 0,82-0,83;

n – число рабочих циклов крана в час, подсчитываемое по формуле:

$$n = \frac{3600}{t_{II}},$$

где  $t_{\rm II}$  – средняя длительность рабочего цикла, с.

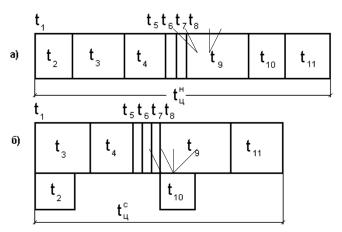



Рисунок 5.3 - Примерная схема построения рабочего цикла крана: а - без совмещения операций;

б - с совмещением операций

Таблица 5.1 – Характеристика изделия

| п/п<br>№ | Наименование изделия   | Марка изделия    | B    | husà | lcm | t <sub>1</sub> | to  | 12  | a  | q  | ٥  | d  | 1  | Н  |
|----------|------------------------|------------------|------|------|-----|----------------|-----|-----|----|----|----|----|----|----|
| 1        | 2                      | 8                | 4    | 5    | 9   | 7              | 8   | 6   | 10 | 11 | 12 | 13 | 14 | 15 |
| 1        | Плита кровли           | Л-3              | 4,75 | 0,28 | 3   | 1              | 7,5 | 5,0 | 10 | 20 | 15 | 25 | 12 | 10 |
| 7        | Плита кровли           | TIK-1            | 4,15 | 0,24 | 3   | 1              | 7,5 | 0,5 | 10 | 40 | 14 | 20 | 12 | 12 |
| 3        | Плита перекрытия       | ПК-8-63-12       | 4,11 | 0,22 | 4   | 1,5            | 8   | 9,0 | 10 | 40 | 13 | 30 | 10 | 13 |
| 4        | Шахта лифта            | 2лш-2            | 3,32 | 2,79 | 4   | 1,5            | ~   | 9,0 | 12 | 20 | 12 | 20 | 12 | 14 |
| 5        | Плита лоджии           | ЛП-60-10         | 3,20 | 0,22 | 2,5 | 1              | 7,5 | 5,0 | 12 | 40 | 11 | 20 | 10 | 15 |
| 9        | Плита лоджии           | ПЛ-60-10л        | 3,17 | 0,22 | 2,5 | 1              | 7,5 | 5,0 | 10 | 45 | 10 | 20 | 12 | 16 |
| 7        | Блок внутренней плиты  | B5-24-26-2-1     | 2,97 | 2,38 | 2,5 | 1              | 7,5 | 5,0 | 10 | 45 | 6  | 25 | 12 | 17 |
| 8        | Опора лотка            | OJIK-1           | 2,86 | 0,24 | 2   | 1              | 7,5 | 5,0 | 10 | 40 | 8  | 20 | 10 | 4  |
| 6        | Блок парапета          | HE-761           | 2,72 | 2,24 | 2,5 | 1              | 7,5 | 5,0 | 14 | 45 | 7  | 25 | 12 | 19 |
| 10       | Шахта лифта            | 2лш-1            | 2,65 | 1,90 | 2,5 | 1              | 7,5 | 5,0 | 12 | 40 | 15 | 20 | 10 | 20 |
| 11       | Плита перекрытия       | IIT-35-12a       | 2,27 | 0,22 | 2   | 1              | 7,5 | 5,0 | 14 | 45 | 14 | 25 | 10 | 21 |
| 12       | Цокольный блок         | Нц-15-15-45      | 2,21 | 1,48 | 2   | 1,5            | 7,5 | 5,0 | 12 | 40 | 13 | 70 | 10 | 22 |
| 13       | Опора лотка            | OJIK-5           | 2,04 | 0,24 | 2,5 | 1              | 7,5 | 0,5 | 12 | 20 | 12 | 25 | 10 | 3  |
| 14       | Перегородка внутренняя | BITK-2-3         | 1,92 | 2,55 | 3   | 1,5            | 8,5 | 9,0 | 12 | 40 | 11 | 30 | 10 | 24 |
| 15       | Цокольный блок         | HIĮ-15-13-45     | 1,73 | 1,48 | 4   | 1              | 7,5 | 0,5 | 12 | 20 | 10 | 25 | 12 | 25 |
| 16       | Козырек входа          | KB-3-5           | 1,61 | 0,15 | 4   | 1              | 7,5 | 0,5 | 10 | 45 | 6  | 30 | 10 | 26 |
| 11       | Лестница               | ЛМ-28-12п        | 1,52 | 0,26 | 3   | 1,5            | 8,5 | 9,0 | 10 | 40 | 8  | 30 | 12 | 27 |
| 18       | Наружный блок          | HEY-9/7-22,5.5-1 | 1,38 | 2,18 | 3   | 1,5            | 8,5 | 9,0 | 12 | 45 | 7  | 25 | 12 | 28 |
| 19       | Ограждения лоджии      | C-1              | 1,35 | 96'0 | 3   | 1              | 7,5 | 5,0 | 10 | 20 | 15 | 25 | 12 | 29 |
| 20       | Плита балкона          | IIB-33-5         | 1,19 | 0,18 | 2   | 1,5            | 8,5 | 9,0 | 12 | 20 | 14 | 30 | 12 | 30 |
| 21       | Перегородка внутренняя | BIIK-10          | 1,18 | 2,55 | 4   | 1,5            | 8,5 | 9,0 | 12 | 40 | 13 | 25 | 10 | 21 |
| 22       | Лестница               | ЛПР-25-12вв      | 1,16 | 0,32 | 3   | 1              | 8   | 0,5 | 14 | 45 | 12 | 20 | 12 | 22 |
| 23       | Блок внутренней плиты  | BE-9.26.2-1      | 1,08 | 2,54 | 2,5 | 1              | 8   | 0,5 | 10 | 20 | 11 | 30 | 10 | 23 |
| 24       | Плита балкона          | IIB-27-5         | 0,07 | 0,18 | 3   | 1              | 8   | 0,5 | 12 | 40 | 10 | 25 | 12 | 24 |
| 25       | Вентиляционный блок    | BEK              | 0,85 | 2,78 | 3   | 1              | 8   | 5,0 | 12 | 45 | 6  | 30 | 12 | 25 |
|          |                        |                  |      |      |     |                |     |     |    |    |    |    |    | L  |

#### ЛИТЕРАТУРА

- 1. Бойко Н.И., Чередниченко С.П. Транспортно-грузовые системы м склады. Ростов н/Д.: Феникс, 2007. 400 с.
- 2. Васильев А.П. Ремонт и содержание автомобильных дорог. М.: Транспорт, 1989. 287 с.
- 3. Васильев А.А. Дорожные машины. М.: Машиностроение, 1987. 416с.
- 4. Ветров Ю.А. Строительные машины. Практические упражнения. К.: Вища школа, 1970. 160 с.
- 5. Гаркави Н.Г. и др. Машины для земляных работ. М.: Высшая школа, 1982. 335 с.
- 6. Гоберман Л.А. Основы теории, расчета и проектирования строительных и дорожных машин. М.: Машиностроение, 1988. 464 с.
- 7. Гриф М.И. Погрузчики мира. Справочник. Выпуск 10. М.: Изд-во Ассоциации строительных вузов, 2005. 216 с.
- 8. Додонов Б.П. Грузоподъемные и транспортные устройства. М.: Машиностроение, 1990. 248 с.
- 9. Захарчук Б.З. Бульдозеры и рыхлители. М.: Машиностроение, 1987. 240 с.
- 10. Хальфин М.Н. Грузоподъемные машины для монтажных и погрузочно-разгрузочных работ. Ростов н/Д.: Феникс, 2006. 608 с.